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Note 

On the Use of Recursion Relations in the Numerical Evaluation 

of Spherical Bessel Functions and Coulomb Functions* 

The regular and irregular spherical Bessel functions, j&(p> and n&) are often 
needed for fixed p and for various orders, 1. This situation arises, for example, in 
the scattering of electromagnetic waves or in a potential scattering problem in 
quantum mechanics [l]. In this case it is natural to evaluate the Bessel functions 
by recursion relation. The irregular function &J) can be obtained from the 
known values of no(p) = -cos(p)/p and ni(p) = -cos(p)/p” - sin(p)/p by the 
recursion relation nl+i(p> = (21 + 1) ni(p)/p - nl-r(p) beginning with I = 1 and 
recurring in the direction of increasing order 1. However, it is now well known that 
the regular function cannot be obtained in this manner because this “forward” 
recursion is unstable when 1 is greater than p [2]. It is also well known that the 
regular functions can be obtained by using the relation backwards. That is, if we 
knowj,@) andj,+,(p) for some Z the relation 

jz-l(f) = (21 + l).~zGJYf - jZ,ltf) (1) 

used toward smaller Z is a stable method, The problem is to determine j+$), jz+l~) 
for some order 1. 

Consider the functions F,(p) = pj&) and Gi(p) = -pn&). They satisfy the 
same recursion relation asj,(p) and n&). They also satisfy the Wronskian relation 

Fz(P) Gz+I(P) - G,(P) Fz+h> = 1 (2) 

or 

J’zF,(pWzt~) - ~z+~CoWz+d~) = WZ(P) Gz+I(P). 

Writing this down for one higher Z value 

~z+&JWZ+IO - Fz+at~)lGz+d~) = W,+,(P) Gz+,(P) 

and adding the two equations, one obtains 

zt1 

(3) 

(4) 
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Continuing this procedure one derives the relation 

since 

~mh)IG+dp) -+ 0 as k-+cc for fixed p. 

Suppose one needs I”,(p), G,(p) for I = 0, l,..., L. First form G&) for I = 0 ,.““) k 
using the recursion relation. Next keep recuring the G,(p) functions and form 
the sum that appears in the Wronskian formula. This sum is rapidly cQ~verge~t 
as soon as I is greater than p. Calling the sum in Eq. (6) S one has 

and 

Now the backward recursion relation can be used to determine all F&p) for 
z = L - 2, L - 3 ,..., 0. 

The following table shows the formation of the sum for the case p = 10 an 
L = 14. Here the G,(p) are obtained from G&O) = -0.83907153 and G,(l 
-0.62793826. 

i 1/G,(l0)G,+,W) S 

14 1.5302377.10-3 1.5302377.10+ 

15 2.3327075.10-* 1.7635084 
16 2.9614871.1O-5 1.7931233 

17 3.2020033.10-6 1.7963253 
18 2.9963224.10-’ 1.7966249 

19 2.4569613.1O-s 1.7966495 
20 l.7832239.1O-9 1.7966513 

21 1.1551602.10-10 1.7966514 

Then F&b) = 2.941O783.1O-2 and E’&lO) = 7.4655845.1O-2 are found since 
G&10) = 1.6369777.1Ol and G&O) = 7.5516370 are known from forward 
recursion. The correct value of P’,,(lO) = sin(l0) = -.54402111 is then obtaine 
by backward recursion. Notice that the terms in the sum are decreasing more than 
one order of magnitude from one value of i to the next. 

If one needs F,(p) for I = 0, 1,2 ,..., L, where L < p they can be formed 
forward recursion. Nevertheless it is interesting to ask if the present method wo 



164 WILLS 

have any difficulty in that case. It would then be possible for a G&) to be zero in 
the sum of Eq. (6) and the equation would be incorrect. However, this can easily 
be remedied by noting that the offending factor appears in two terms 

~/G-I(P) G(P) + W,(P) G+dp> 

and that this expression can be rewritten as (2i + l)/pG$-,(p) Gi+,@) by using the 
recursion relation. Thus such a factor can be easily removed. 

The most commonly used method of obtaining FL(p), FL-,(p) to begin the 
backward recursion is the Miller technique [I]. In this procedure one guesses 
FN+l(p) = 0 for some N> L. Then the downward recursion relation is used to 
find all F&p). These must then be normalized by the known value of Fe(p). But how 
does one choose N such that the relative error of FL+(p) and F,(p) is negligible ? 
N clearly depends on both L and p. The empirical procedure most often used 
here is to guess an N, calculate all Fl , guess a larger N and recalculate the Fi 
and see if they agree for I = 0, 1,2 ,..., L; See Refs. [3,4]. If not, repeat with still 
a larger N until the F,(p) have converged. Both the iterative nature of this procedure 
and the normalization can be avoided if the currently proposed procedure is used. 

Mechel [5] has provided a significant improvement over Miller’s technique in 
obtaining F,(p) and F&p). His approach is to recognize that the recursion relation, 
Eq. (l), can be written as 

PLI@)/FLCP) = W + 1) - P~IPJ;L(PPL+~P) (9) 

and that for L > p this can be evaluated by the continued fraction 

PFL-I(PY&(P) = (2L + 1) - & _ & 
2 

- & *-- * (10) 

Knowing the ratio of FLwl(p) to F,(p), the set of r;‘, generated by downward 
recursion are only unknown by a common constant factor. This factor is obtained 
by the known value of Fe(p), as in the Miller technique. In evaluating the continued 
fraction one does not know in advance how many terms to include, to obtain a 
given accuracy in the FL(p). Thus, the sum will have to be done at least twice to 
check for accuracy. This recalculation of the sum and the required normalization 
are avoided in the method proposed in this paper. 

Mechel’s method and the present method using Eqs. (6)-(X) were compared for 
thecasep = 10, l=O, 1, 2 ,..., 14. Both methods were programmed in FORTRAN~ for 
the Indiana University CDC 6600 computer. The code using the proposed method 
was 145 words long and took 1.02 psec. to compute F&) and G,(p). The program 
using Mechel’s method was 137 words long and took 0.90 psec. to compute F,(p) 
alone. A simple program to calculate GI alone was 63 words long and took 
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0.33 pusec. It is seen that Mechel’s method has a slight advantage if only the regular 
functions are needed and that the proposed method has an advantage if both the 
regular and irregular functions are needed. In his paper Mechel suggests that 
FL(p) be computed by the approximate relation F,(p) = l/GL+,(p), which is the 
first term of the sum in Eq. (6). The value of this procedure is to get the normal- 
ization about correct to avoid overflow. If this procedure is followed, then the 
set of G,(p) have to computed and his method would lose its advantage over Eq. (6). 
However, the relation he suggests is only a relation between the first terms of the 
power series expansions for F,(p) and GL+l(p)s thus one can write FL(p) - 
pLi1j(2L + l)! ! and avoid the calculation of G,+,(p). 

The discussion thus far has considered only the spherical essel functions. The 
Coulomb wavefunctions satisfy a similar Wronskian relation 

with 

Ai = i/[i2 + q2]li2. 

Here the normalization is 

Eth P> --f sin 0, , Gz(q, P> - ~0s 6 as p-+-co 

with 

8, = p - 7jLn(2p) - h/2 + UE and oz = arg F’(l + 1 + iy). 

The computation of G,,(q, p) and G1(y, p) is much more difficult in this case but 
once that is done the use of the Wronskian relation to determine Ft(q, p) for some 
large I is the same as for Bessel functions. The Coulomb wavefunction programs 
described by Smith [3] and Tamura [4] still use the Miller approach. They could 
be improved by using the present method. 

It is also noted that the method of Mechel can be applied to Coulomb functions 
yielding 

HI,(P) = (2L -t l)(rlp + W + ~))/(W i I>> - (1 + ?/CL + I>“> P?HL+I 

(12) 

where H,(p) = (1 + v2/L2)1/2 pF,,(p)/FL(p). The normalization is more dif%cult 
here than in the case of spherical Bessel functions. 

$31/8/I-II 
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